Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Am J Cardiol ; 183: 24-32, 2022 11 15.
Article in English | MEDLINE | ID: covidwho-2240123

ABSTRACT

The purpose of this review is to determine the causal mechanisms and treatment of inappropriate sinoatrial tachycardia (IST), defined as a non-physiological elevation in resting heart rate. IST is defined as a resting daytime sinus rate >100 beats/minute and an average 24-hour heart rate >90 beats/minute. Potential causal mechanisms include sympathetic receptor hypersensitivity, blunted parasympathetic tone, or enhanced intrinsic automaticity within the sinoatrial node (SAN) pacemaker-conduction complex. These anomalies may coexist in the same patient. Recent ex-vivo near-infrared transmural optical imaging of the SAN in human and animal hearts provides important insights into the functional and molecular features of this complex structure. In particular, it reveals the existence of preferential sinoatrial conduction pathways that ensure robust SAN activation with electrical conduction. The mechanism of IST is debated because even high-resolution electroanatomical mapping approaches cannot reveal intramural conduction in the 3-dimensional SAN complex. It may be secondary to enhanced automaticity, intranodal re-entry, or sinoatrial conduction pathway re-entry. Different pharmacological approaches can target these mechanisms. Long-acting ß blockers in IST can act on both primarily increased automaticity and dysregulated autonomic system. Ivabradine targets sources of increased SAN automaticity. Conventional or hybrid ablation may target all the described abnormalities. This review provides a state-of-the-art overview of putative IST mechanisms. In conclusion, based on current knowledge, pharmacological and ablation approaches for IST, including the novel hybrid SAN sparing ablation, are discussed.


Subject(s)
Arrhythmias, Cardiac , Sinoatrial Node , Animals , Heart Rate/physiology , Humans , Ivabradine/therapeutic use , Tachycardia , Tachycardia, Sinus
2.
Int J Mol Sci ; 23(19)2022 Oct 01.
Article in English | MEDLINE | ID: covidwho-2066135

ABSTRACT

Sudden death is defined as the unexpected death of a healthy person that occurs within the first hour of the onset of symptoms or within 24 h of the victim being last seen alive. In some of these cases, rare deleterious variants of genes associated with inherited cardiac disorders can provide a highly probable explanation for the fatal event. We report the case of a 21-year-old obese woman who lost consciousness suddenly in a public place and was pronounced dead after hospital admission. Clinical autopsy showed an inconclusive gross examination, while in the histopathological analysis an eosinophilic inflammatory focus and interstitial fibrosis in the sino-atrial node were found. Molecular autopsy revealed an intronic variant in the KCNQ1 gene (c.683 + 5G > A), classified as likely pathogenic for long QT syndrome according to the guidelines provided by the American College of Medical Genetics and Genomics. Therefore, there were many anomalies that could have played a role in the causation of the sudden death, such as the extreme obesity, the cardiac anomalies and the KNCQ1 variant. This case depicts the difficult interpretation of rare cardiac structural abnormalities in subjects carrying rare variants responsible for inherited arrhythmic disorders and the challenge for the forensic pathologist to make causal inferences in the determinism of the unexpected decease.


Subject(s)
Long QT Syndrome , Sinoatrial Node , Adult , Autopsy , Death, Sudden, Cardiac/etiology , Death, Sudden, Cardiac/pathology , Female , Humans , KCNQ1 Potassium Channel , Long QT Syndrome/complications , Long QT Syndrome/genetics , Sinoatrial Node/pathology , Young Adult
3.
Circ Res ; 130(7): 963-977, 2022 04.
Article in English | MEDLINE | ID: covidwho-1731376

ABSTRACT

BACKGROUND: Increasing evidence suggests that cardiac arrhythmias are frequent clinical features of coronavirus disease 2019 (COVID-19). Sinus node damage may lead to bradycardia. However, it is challenging to explore human sinoatrial node (SAN) pathophysiology due to difficulty in isolating and culturing human SAN cells. Embryonic stem cells (ESCs) can be a source to derive human SAN-like pacemaker cells for disease modeling. METHODS: We used both a hamster model and human ESC (hESC)-derived SAN-like pacemaker cells to explore the impact of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection on the pacemaker cells of the heart. In the hamster model, quantitative real-time polymerase chain reaction and immunostaining were used to detect viral RNA and protein, respectively. We then created a dual knock-in SHOX2:GFP;MYH6:mCherry hESC reporter line to establish a highly efficient strategy to derive functional human SAN-like pacemaker cells, which was further characterized by single-cell RNA sequencing. Following exposure to SARS-CoV-2, quantitative real-time polymerase chain reaction, immunostaining, and RNA sequencing were used to confirm infection and determine the host response of hESC-SAN-like pacemaker cells. Finally, a high content chemical screen was performed to identify drugs that can inhibit SARS-CoV-2 infection, and block SARS-CoV-2-induced ferroptosis. RESULTS: Viral RNA and spike protein were detected in SAN cells in the hearts of infected hamsters. We established an efficient strategy to derive from hESCs functional human SAN-like pacemaker cells, which express pacemaker markers and display SAN-like action potentials. Furthermore, SARS-CoV-2 infection causes dysfunction of human SAN-like pacemaker cells and induces ferroptosis. Two drug candidates, deferoxamine and imatinib, were identified from the high content screen, able to block SARS-CoV-2 infection and infection-associated ferroptosis. CONCLUSIONS: Using a hamster model, we showed that primary pacemaker cells in the heart can be infected by SARS-CoV-2. Infection of hESC-derived functional SAN-like pacemaker cells demonstrates ferroptosis as a potential mechanism for causing cardiac arrhythmias in patients with COVID-19. Finally, we identified candidate drugs that can protect the SAN cells from SARS-CoV-2 infection.


Subject(s)
COVID-19 , Ferroptosis , Humans , Myocytes, Cardiac/metabolism , SARS-CoV-2 , Sinoatrial Node/metabolism
5.
Prog Biophys Mol Biol ; 166: 86-104, 2021 11.
Article in English | MEDLINE | ID: covidwho-1230706

ABSTRACT

RESEARCH PURPOSE: The sinus node (SN) is the heart's primary pacemaker. Key ion channels (mainly the funny channel, HCN4) and Ca2+-handling proteins in the SN are responsible for its function. Transcription factors (TFs) regulate gene expression through inhibition or activation and microRNAs (miRs) do this through inhibition. There is high expression of macrophages and mast cells within the SN connective tissue. 'Novel'/unexplored TFs and miRs in the regulation of ion channels and immune cells in the SN are not well understood. Using RNAseq and bioinformatics, the expression profile and predicted interaction of key TFs and cell markers with key miRs in the adult human SN vs. right atrial tissue (RA) were determined. PRINCIPAL RESULTS: 68 and 60 TFs significantly more or less expressed in the SN vs. RA respectively. Among those more expressed were ISL1 and TBX3 (involved in embryonic development of the SN) and 'novel' RUNX1-2, CEBPA, GLI1-2 and SOX2. These TFs were predicted to regulate HCN4 expression in the SN. Markers for different cells: fibroblasts (COL1A1), fat (FABP4), macrophages (CSF1R and CD209), natural killer (GZMA) and mast (TPSAB1) were significantly more expressed in the SN vs. RA. Interestingly, RUNX1-3, CEBPA and GLI1 also regulate expression of these cells. MiR-486-3p inhibits HCN4 and markers involved in immune response. MAJOR CONCLUSIONS: In conclusion, RUNX1-2, CSF1R, TPSAB1, COL1A1 and HCN4 are highly expressed in the SN but not miR-486-3p. Their complex interactions can be used to treat SN dysfunction such as bradycardia. Interestingly, another research group recently reported miR-486-3p is upregulated in blood samples from severe COVID-19 patients who suffer from bradycardia.


Subject(s)
COVID-19 , MicroRNAs , Humans , Hyperpolarization-Activated Cyclic Nucleotide-Gated Channels/genetics , MicroRNAs/genetics , SARS-CoV-2 , Sinoatrial Node , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL